Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(18): 7692-7701, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841032

RESUMO

Two-dimensional Ruddlesden-Popper hybrid lead halide perovskites have become a major topic in perovskite optoelectronics. Here, we aim to unravel the ultrafast dynamics governing the evolution of charge carriers and excitons in these materials. Using a combination of ultrabroadband time-resolved THz (TRTS) and fluorescence upconversion spectroscopies, we find that sequential carrier cooling and exciton formation best explain the observed dynamics, while exciton-exciton interactions play an important role in the form of Auger heating and biexciton formation. We show that the presence of a longer-lived population of carriers is due to the latter processes and not to a Mott transition. Therefore, excitons still dominate at laser excitation densities. We use kinetic modeling to compare the phenethylammonium and butylammonium organic cations while investigating the stability of the resulting films. In addition, we demonstrate the capability of using ultrabroadband TRTS to study excitons in large binding energy semiconductors through spectral analysis at room temperature.

2.
Adv Funct Mater ; 30(28): 2000228, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684906

RESUMO

2D hybrid perovskites (2DP) are versatile materials, whose electronic and optical properties can be tuned through the nature of the organic cations (even when those are seemingly electronically inert). Here, it is demonstrated that fluorination of the organic ligands yields glassy 2DP materials featuring long-lived correlated electron-hole pairs. Such states have a marked charge-transfer character, as revealed by the persistent Stark effect in the form of a second derivative in electroabsorption. Modeling shows that electrostatic effects associated with fluorination, combined with the steric hindrance due to the bulky side groups, drive the formation of spatially dislocated charge pairs with reduced recombination rates. This work enriches and broadens the current knowledge of the photophysics of 2DP, which will hopefully guide synthesis efforts toward novel materials with improved functionalities.

3.
J Am Chem Soc ; 141(44): 17659-17669, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31593456

RESUMO

Chemical doping of inorganic-organic hybrid perovskites is an effective way of improving the performance and operational stability of perovskite solar cells (PSCs). Here we use 5-ammonium valeric acid iodide (AVAI) to chemically stabilize the structure of α-FAPbI3. Using solid-state MAS NMR, we demonstrate the atomic-level interaction between the molecular modulator and the perovskite lattice and propose a structural model of the stabilized three-dimensional structure, further aided by density functional theory (DFT) calculations. We find that one-step deposition of the perovskite in the presence of AVAI produces highly crystalline films with large, micrometer-sized grains and enhanced charge-carrier lifetimes, as probed by transient absorption spectroscopy. As a result, we achieve greatly enhanced solar cell performance for the optimized AVA-based devices with a maximum power conversion efficiency (PCE) of 18.94%. The devices retain 90% of the initial efficiency after 300 h under continuous white light illumination and maximum-power point-tracking measurement.

4.
J Phys Chem Lett ; 10(19): 5713-5720, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31497955

RESUMO

Combining halide perovskites with tailored dimensionality into two/three-dimensional (2D/3D) systems has revealed a powerful strategy to boost the performances of perovskite photovoltaics (PVs). Despite recent advances, a clear understanding of the intimate link between interface structure and physics is still missing, leading so far to a blind optimization of the 2D/3D PVs. Here, we reveal the impact of 2D/3D crystal alignment in driving interface charge-recombination dynamics. The 2D crystal growth and orientation are manipulated by specific fluorination of phenethylammonium (PEA), used here as the organic cation backbone of the 2D component. By means of time-resolved optoelectronic analysis from the femto- to microsecond regions, we demonstrate a static function of the 2D layer as an electron barrier and homogeneous surface passivant, together with a dynamic role in retarding back charge recombination. Our results reveal a crucial dependence of such beneficial effects with the 2D layer, leading to an enhanced open-circuit voltage (Voc), mostly attributed to the 2D phase which orients parallel on the 3D layer. Such findings provide a deep understanding and delineate precise guidelines for the smart design of multidimensional perovskite interfaces for advanced PVs and beyond.

5.
J Phys Chem A ; 122(37): 7256-7266, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30141941

RESUMO

Excited-state dynamics and electronic structures of Al and Ga corrole complexes were studied as a function of the number of ß-pyrrole iodine substituents. Using spectrally broad-band femtosecond-resolved fluorescence upconversion, we determined the kinetics of the Soret fluorescence decay, the concomitant rise and subsequent decay of the Q-band fluorescence, as well as of the accompanying vibrational relaxation. Iodination was found to accelerate all involved processes. The time constant of the internal conversion from the Soret to the Q states decreases from 320-540 to 70-185 fs upon iodination. Vibrational relaxation then occurs with about 15 and 0.36-1.4 ps lifetime for iodine-free and iodinated complexes, respectively. Intersystem crossing to the lowest triplet is accelerated up to 200 times from nanoseconds to 15-24 ps; its rate correlates with the iodine p(π) participation in the corrole π-system and the spin-orbit coupling (SOC) strength. TDDFT calculations with explicit SOC show that iodination introduces a manifold of low-lying singlet and triplet iodine → corrole charge-transfer (CT) states. These states affect the photophysics by (i) providing a relaxation cascade for the Soret → Q internal conversion and cooling and (ii) opening new SOC pathways whereby CT triplet character is admixed into both Q singlet excited states. In addition, SOC between the higher Q singlet and the Soret triplet is enhanced as the iodine participation in frontier corrole π-orbitals increases. Our observations that iodination of the chromophore periphery affects the whole photocycle by changing the electronic structure, spin-orbit coupling, and the density of states rationalize the "heavy-atom effect" and have implications for controlling excited-state dynamics in a range of triplet photosensitizers.

6.
Chem Sci ; 8(6): 4371-4380, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28966782

RESUMO

Highly photoluminescent hybrid lead halide perovskite nanoparticles have recently attracted wide interest in the context of high-stake applications, such as light emitting diodes (LEDs), light emitting transistors and lasers. In addition, they constitute ideal model systems to explore energy and charge transport phenomena occurring at the boundaries of nanocrystalline grains forming thin films in high-efficiency perovskite solar cells (PSCs). Here we report a complete photophysical study of CH3NH3PbBr3 perovskite nanoparticles suspended in chlorobenzene and highlight some important interaction properties. Colloidal suspensions under study were constituted of dispersed aggregates of quasi-2D platelets of a range of thicknesses, decorated with 3D-like spherical nanoparticles. These types of nanostructures possess different optical properties that afford a handle for probing them individually. The photophysics of the colloidal particles was studied by femtosecond pump-probe spectroscopy and time-correlated single-photon counting. We show here that a cascade of energy and exciton-mediated charge transfer occurs between nanostructures: upon photoexcitation, localized excitons within one nanostructure can either recombine on a ps timescale, yielding a short-lived emission, or form charge-transfer states (CTSs) across adjacent domains, resulting in longer-lived photoluminescence in the millisecond timescale. Furthermore, CTSs exhibit a clear signature in the form of a strong photoinduced electroabsorption evidenced in femtosecond transient absorption measurements. Charge transfer dynamics at the surface of the nanoparticles have been studied with various quenchers in solution. Efficient hole transfer to N,N,N',N'-tetrakis(4-methoxyphenyl)benzidine (MeO-TPD) and 1,4-bis(diphenyl-amino)benzene (BDB) donors was attested by the quenching of the nanoparticles emission. The charge transfer rate was limited by the organic layer used to stabilize the nanoparticles, which acted as a wide spacer between reactants. The forward charge transfer was found to take place in the sub-microsecond time-scale in competition with slow carrier recombination, while back transfer was shown to occur with a time-constant τ = 25 ms.

7.
Chimia (Aarau) ; 71(4): 231-235, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446342

RESUMO

Unravelling the nature of the interactions between photogenerated charge carriers in solar energy conversion devices is key to enhance performance. In this perspective, we discuss electroabsorption spectroscopy (EAS), as the spectral bandshape of the electroabsorption (EA) signal directly depends on the strength of the charge carrier interactions. For instance, the electroabsorption response in molecular or confined excitonic systems can be modelled perturbatively yielding the Stark effect. In contrast, most solids exhibit weaker interactions, and a perturbative approach cannot be taken in general. For solids with negligible charge carrier interactions, one resorts to the Franz-Keldysh theory of a continuum in a field, that, in the low-field limit, simplifies to the low-field FKA effect. Alternatively, when the continuum approximation breaks down, the problem of a Wannier exciton in a field has to be solved, and numerical methods emerged as the best solution. We illustrate our discussion with two examples involving lead-halide perovskites, a new, high-stake solar cell material. In the first example, we discuss the lineshape of the electroabsorption response for thin-films of lead-iodide perovskite, that sustains the photogeneration of free carriers. In the second example, we address a confined excitonic case with lead-bromide perovskite nanoparticles, and demonstrate the presence of so-called charge-transfer excitons.

8.
J Am Chem Soc ; 138(32): 10331-43, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27437906

RESUMO

Lead halide perovskites have over the past few years attracted considerable interest as photo absorbers in PV applications with record efficiencies now reaching 22%. It has recently been found that not only the composition but also the precise stoichiometry is important for the device performance. Recent reports have, for example, demonstrated small amount of PbI2 in the perovskite films to be beneficial for the overall performance of both the standard perovskite, CH3NH3PbI3, as well as for the mixed perovskites (CH3NH3)x(CH(NH2)2)(1-x)PbBryI(3-y). In this work a broad range of characterization techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photo electron spectroscopy (PES), transient absorption spectroscopy (TAS), UV-vis, electroluminescence (EL), photoluminescence (PL), and confocal PL mapping have been used to further understand the importance of remnant PbI2 in perovskite solar cells. Our best devices were over 18% efficient, and had in line with previous results a small amount of excess PbI2. For the PbI2-deficient samples, the photocurrent dropped, which could be attributed to accumulation of organic species at the grain boundaries, low charge carrier mobility, and decreased electron injection into the TiO2. The PbI2-deficient compositions did, however, also have advantages. The record Voc was as high as 1.20 V and was found in PbI2-deficient samples. This was correlated with high crystal quality, longer charge carrier lifetimes, and high PL yields and was rationalized as a consequence of the dynamics of the perovskite formation. We further found the ion migration to be obstructed in the PbI2-deficient samples, which decreased the JV hysteresis and increased the photostability. PbI2-deficient synthesis conditions can thus be used to deposit perovskites with excellent crystal quality but with the downside of grain boundaries enriched in organic species, which act as a barrier toward current transport. Exploring ways to tune the synthesis conditions to give the high crystal quality obtained under PbI2-poor condition while maintaining the favorable grain boundary characteristics obtained under PbI2-rich conditions would thus be a strategy toward more efficiency devices.

9.
J Chem Phys ; 143(1): 014111, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26156469

RESUMO

The floating occupation molecular orbital-complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the state-averaged complete active space self-consistent field (SA-CASSCF) method. We have formulated the analytic first derivative of FOMO-CASCI in a manner that is well-suited for a highly efficient implementation using graphical processing units (GPUs). Using this implementation, we demonstrate that FOMO-CASCI gradients are of similar computational expense to configuration interaction singles (CIS) or time-dependent density functional theory (TDDFT). In contrast to CIS and TDDFT, FOMO-CASCI can describe multireference character of the electronic wavefunction. We show that FOMO-CASCI compares very favorably to SA-CASSCF in its ability to describe molecular geometries and potential energy surfaces around minimum energy conical intersections. Finally, we apply FOMO-CASCI to the excited state hydrogen transfer reaction in methyl salicylate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...